Magnetization switching in a Heisenberg model for small ferromagnetic particles
نویسندگان
چکیده
We investigate the thermally activated magnetization switching of small ferromagnetic particles driven by an external magnetic field. For low uniaxial anisotropy the spins can be expected to rotate coherently, while for sufficient large anisotropy they should behave Ising-like, i.e., the switching should then be due to nucleation. We study this crossover from coherent rotation to nucleation for a classical three-dimensional Heisenberg model with finite anisotropy. The crossover is influenced by the size of the particle, the strength of the driving magnetic field, and the anisotropy. We discuss the relevant energy barriers which have to be overcome during the switching, and find theoretical arguments which yield the energetically favorable reversal mechanisms for given values of the quantities above. The results are confirmed by Monte Carlo simulations of Heisenberg and Ising models.
منابع مشابه
Magnetization switching in small ferromagnetic particles: Nucleation and coherent rotation
The mechanisms of thermally activated magnetization switching in small ferromagnetic particles driven by an external magnetic field are investigated. For low uniaxial anisotropy the spins rotate coherently while for sufficiently large uniaxial anisotropy they behave Ising-like, i.e., the switching then is due to nucleation. The crossover from coherent rotation to nucleation is studied for the c...
متن کاملMonte Carlo simulation of magnetization switching in a Heisenberg model for small ferromagnetic particles
Using Monte Carlo methods we investigate the thermally activated magnetization switching of small ferromagnetic particles driven by an external magnetic field. For low uniaxial anisotropy one expects that the spins rotate coherently while for sufficiently large anisotropy the reversal should be due to nucleation. The latter case has been investigated extensively by Monte Carlo simulation of cor...
متن کاملOn the Interplay of Magnetic and Molecular Forces in Curie - Weiss Ferrofluid Models
We consider a mean-field continuum model of classical particles in Rd with Ising or Heisenberg spins. The interaction has two ingredients, a ferromagnetic spin coupling and a spin-independent molecular force. We show that a feedback between these forces gives rise to a first-order phase transition with simultaneous jumps of particle density and magnetization per particle, either at the threshol...
متن کاملAnalytical and computational study of magnetization switching in kinetic Ising systems with demagnetizing fields.
An important aspect of real ferromagnetic particles is the demagnetizing field resulting from magnetostatic dipole-dipole interaction, which causes large particles to break up into domains. Sufficiently small particles, however, remain single-domain in equilibrium. This makes such small particles of particular
متن کاملThermodynamic Properties of Small Magnetic Particles
We investigate the equilibrium magnetic properties of a simple cubic small ferromagnetic particle under an external magnetic field. Although the particle is small, it can not be considered as a single-domain unit. The magnetic moments are represented by unitary spin vectors and we consider ferromagnetic interactions between nearest-neighbor spins. The coupling between spins is given in terms of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998